Meromorphic Non-Integrability of Several 3D Dynamical Systems

نویسندگان

  • Kaiyin Huang
  • Shaoyun Shi
  • Wenlei Li
چکیده

In this paper, we apply the differential Galoisian approach to investigate the meromorphic non-integrability of a class of 3D equations in mathematical physics, including Nosé–Hoover equations, the Lü system, the Rikitake-like system and Rucklidge equations, which are well known in the fields of molecular dynamics, chaotic theory and fluid mechanics, respectively. Our main results show that all these considered systems are, in fact, non-integrable in nearly all parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGRABILITY OF AN INTERVAL-VALUED MULTIFUNCTION WITH RESPECT TO AN INTERVAL-VALUED SET MULTIFUNCTION

Intervals are related to the representation of uncertainty. In this sense, we introduce an integral of Gould type for an interval-valued multifunction relative to an interval-valued set multifunction, with respect to Guo and Zhang order relation. Classicaland specific properties of this new type of integral are established and several examples and applications from multicriteria decision making...

متن کامل

The Search for Invariants for 3d Systems of 1odes - a New Method and Integrability Analysis

In [1], we have presented the theoretical background for finding the Elementary Invariants for a 3D system of first order rational differential equations (1ODEs). We have also provided an algorithm to find such Invariants. Here we introduce new theoretical results that will lead to a novel, more efficient, approach to determine these invariants. Furthermore, one important aspect of such dynamic...

متن کامل

Isospectral Integrability Analysis of Dynamical Systems on Discrete Manifolds

It is shown how functional-analytic gradient-holonomic structures can be used for an isospectral integrability analysis of nonlinear dynamical systems on discrete manifolds. The approach developed is applied to obtain detailed proofs of the integrability of the discrete nonlinear Schrödinger, Ragnisco–Tu and Riemann–Burgers dynamical systems.

متن کامل

Symmetries and Integrability

This is a survey on finite-dimensional integrable dynamical systems related to Hamiltonian G-actions. Within a framework of noncommutative integrability we study integrability of G-invariant systems, collective motions and reduced integrability. We also consider reductions of the Hamiltonian flows restricted to their invariant submanifolds generalizing classical Hess–Appel’rot case of a heavy r...

متن کامل

The Poisson equations in the nonholonomic Suslov problem: Integrability, meromorphic and hypergeometric solutions

We consider the problem of integrability of the Poisson equations describing spatial motion of a rigid body in the classical nonholonomic Suslov problem. We obtain necessary conditions for their solutions to be meromorphic and show that under some further restrictions these conditions are also sufficient. The latter lead to a family of explicit meromorphic solutions, which correspond to rather ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017